We now turn to the mathematical structure of quantum theory. We will not devote much time to the physical bases of the theory, but we do need a little motivation. Please read the summary on pages 15-22 of the text for more details.

** Physical Bases of Quantum Mechanics **

The two basic observations that you should note are

- The idea of
*uncertainty*, and*Heisenberg’s uncertainty principle.*The outcome of a measurement is*never*precisely determined by the state of a quantum system. Furthermore, if we prepare a state in which some quantity (e.g., the position of a particle) is specified with very little uncertainty, then another quantity (like e.g., the momentum of a particle) will have a high degree of uncertainty in the resulting state. - The idea of wave-particle duality, namely that quantum particles exhibit properties of waves (like diffraction and interference) and of particles.

In fact the two ideas are linked: uncertainty results from the wave-like nature of particles as we will now see. For instance, to measure the position of an electron, we could use light of a certain wavelength . In principle this would allow us to measure the position of the electron with a precision, i.e., an uncertainty, of order . However, in so doing we will have caused the electron to interact with the photons in the light. Photons are the particle like description of light and carry a momentum (according to Einstein’s analysis of the photo electric effect) of magnitude where is Planck’s constant

The result is that the momentum of the electron has an uncertainty of order after we measure it’s position. (The value (1) is standard. The text-book uses to denote another quantity, namely , which is standardly denoted .)

To understand the physics, it is important to note that uncertainty in quantum mechanics is very different from the fuzziness we introduced with densities on phase space in classical mechanics. Heisenberg’s uncertainty principle results from a *fundamental and unescapable interaction of a system with our measuring apparatus.* Later we will see that there are pure states in quantum mechanics, but that there is still uncertainty for observables in these states.

** States and observables **

Henceforth we will consider a *quantum system.* As yet we have not defined what such a thing is, but we will continue to suppose that we have two objects:

- A collection of observables .
- A collection of states .

Observables are properties of the system that we can measure and states describe the configuration of the system. Fundamental to the uncertainty principle is that *it may not be possible to simultaneously measure two observables* — for instance it is not possible to measure the position and momentum of a particle. However, we may measure a single observable . As above we assume a pairing between states and observables

Given an observable and a continuous real valued function we can define the observable to be

If we measure to have value , then has value .

Clearly and are (by definition) simultaneously measurable. The mapping

is a linear mapping on the space of real valued functions on the real line and can be written

for some probability measure on . In particular

Physically, you should imagine that we can produce a very large number of identical systems all in state and not interacting with one another. If we measure the observable in each of these systems obtaining the values then we should have

Mathematically, the above structure amounts to assuming that

There is an action of continuous real valued functions on the set of observables in such a way that and each state gives an assignment of a probability measure on to each observable in such a way that

In particular, note that if is disjoint from the range of , so that . Thus, for example,

The set of states is not a vector space, however it does make sense to define the *convex combination *of states and as follows. Given let denote the state

or equivalently that

That this *does* define a state follows if we assume

Completeness of. The set of states iscomplete. That is, any rule assigning probability measures to observables and satisfying (2) is a state.

We will use the suggestive notation for the state .

In addition to completeness, we shall assume that

- If two states are different then they must differ in some observable way.
- If two observables are distinct then it is possible to prepare a state in which they have distinct averages.

Mathematically this amounts to the following

Mean values separate states and observables.The pairingseparates points in and in. That is

- if for every then , and
- if for every then .

The set of observables is *not* assumed to be an algebra: we have no good definition of unless we can simultaneously measure and . However, the separability assumptions do allow us to make a vector space. We already have define for and : it is the result of applying the function to . To define the addition of two observables we take

This is a little deceptive. After all, how do I know that there is an observable that gives the right hand side when paired with states? For this to work we need another completeness assumption, namely

Completeness of .The set of observables is complete in the following sense. If is a linear map, in thatfor any states and and , then for some observable .

This allows us to make sense of (3) as a definition, *although it does not allow us to compute the measure or the averages in any explicit way.*

The sum does allow for a sort-of product on the set of observables, namely

Although this product is commutative, it does not (necessarily) obey the associative law.

** Uncertainty **

The *uncertainty* or *standard deviation *of an observable in state is the quantity

This definition is equally valid in classical or quantum mechanics, however note that for *every observable* if is a pure state in classical mechanics. On the other hand, Heisenberg’s uncertainty principle states that for a state describing a quantum particle, such as an electron,

where and are the position and momentum observables and .